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Motivated by the problem of microfluidic mixing, optimal control of advective mixing
in Stokes fluid flows is considered. The velocity field is assumed to be induced by
a finite set of spatially distributed force fields that can be modulated arbitrarily
with time, and a passive material is advected by the flow. To quantify the degree
of mixedness of a density field, we use a Sobolev space norm of negative index. We
frame a finite-time optimal control problem for which we aim to find the modulation
that achieves the best mixing for a fixed value of the action (the time integral of the
kinetic energy of the fluid body) per unit mass. We derive the first-order necessary
conditions for optimality that can be expressed as a two-point boundary value
problem (TPBVP) and discuss some elementary properties that the optimal controls
must satisfy. A conjugate gradient descent method is used to solve the optimal
control problem and we present numerical results for two problems involving arrays
of vortices. A comparison of the mixing performance shows that optimal aperiodic
inputs give better results than sinusoidal inputs with the same energy.

1. Introduction
From a practical engineering perspective, and in particular for microfluidic mixing

devices (Stroock et al. 2002), it is often necessary to design protocols to mix a specific
initial density field in finite time. The advent of new microfluidic technologies (see
Stone, Stroock & Ajdari 2004) that make use of phenomena such as dielectrophoresis
and electro-osmosis make it possible to generate arbitrarily time-varying velocity
fields, thus opening the possibility of using the tools of optimal control theory to
facilitate microfluidic mixing. The Péclet numbers (the ratio between advective and
diffusive transport) for typical microscale flows are large (Pe > 100) and given the
typical velocities at the microscale, the channel lengths required for diffusion alone to
cause uniform spreading of material are prohibitively long (� 1 cm) (see Stroock et al.
2002). For this reason, microscale mixing processes need to be advection dominated.

Research on fluid mixing has been dominated by studies that are geometric in nature
and applied to steady and time-periodic flows (see Aref 1984; Ottino 1989; Wiggins
1992). There have been relatively few studies of flows that are aperiodic in time (see e.g.
Haller & Poje 1998; Malhotra & Wiggins 1998; Chrisohoides & Sotiropoulos 2003).
In ergodic-theoretic approaches to mixing (Lasota & Mackey 1994; Arnold & Avez
1968; Petersen 1983), geometric properties of the underlying dynamical system are
implicit and the emphasis is usually on infinite-time-averaged properties. An example
of a study dealing with finite-time statistical properties associated with finite-time
geometric properties is Poje, Haller & Mezić (1999). The objective of our paper is to
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advance a new formalism for optimal control of advective mixing in aperiodic flows,
by building upon the ideas for quantifying mixing that are discussed in our previous
work (Mathew, Mezić & Petzold 2005) and combining it with concepts from finite-
horizon optimal control theory. Previous approaches to the control of mixing include
the study of control protocols that destroy symmetries (Franjione & Ottino 1992),
maximization of mixing by enhancing Lyapunov exponents (Sharma & Gupte 1997),
the study of optimal mixing protocols for combinations of shear flows (D’Alessandro,
Dahleh & Mezić 1999), feedback control of mixing optimizing Eulerian-velocity-based
measures of mixing (Balogh, Aamo & Kristic 2005), topological approaches (Boyland,
Aref & Stremler 2000; Thiffeault & Finn 2006) and the control of unstable manifolds
emanating from separation points (Wang et al. 2003). All these approaches aim to
control geometric features of the flow and suffer from the drawback that the mixing
protocols are designed without any consideration of the initial density field (or fluid
configuration). Our approach in this paper is to set aside geometric aspects and to
control the evolution of advected density fields in a manner that is optimal for mixing.

The problem considered in this paper is that of a Stokes fluid flow where the
velocity field is assumed to be induced by a finite set of spatially distributed force
fields that can be modulated arbitrarily in time. A passive material is advected by
the flow. To quantify the degree of mixedness of a density field, we use a Sobolev
space norm of negative index. The optimal control problem is to find the modulation
of the force fields that achieves the best mixing for a fixed value of the action (the
time integral of the kinetic energy of the fluid body) per unit mass. We derive the
first-order necessary conditions for optimality that can be expressed as a two-point
boundary value problem (TPBVP). We seek numerical approximations to solutions
of the TPBVP using a conjugate gradient descent method. We also discuss two other
related optimal control problems: where we require a fixed degree of mixedness to
be achieved with minimum action; and where we minimize a cost-function that is a
weighted sum of the degree of mixedness and the action per unit mass. A weighting
parameter w > 0 determines how much the action is penalized relative to the degree
of mixedness achieved. The relevance of the solutions that minimize this weighted
sum is discussed in more detail in § 2.2.2.

In the planar case, it is impossible to achieve chaotic advection with a velocity field
of the type α(t)u(x), where u is a velocity field and α could be an arbitrary function of
time. This is because the Lagrangian fluid elements are constrained to flow along the
streamlines of the velocity field u and therefore it is impossible for a particle to visit
every portion of the phase space. To cause chaotic advection, it is necessary to have
at least two independent velocity fields that are superimposed upon each other and at
least one is modulated with time. In this paper, we assume velocity fields of the form
α1(t)u1(x) + α2(t)u2(x). In the three-dimensional case, it is possible to have chaotic
advection even with a steady velocity field (Bajer & Moffatt 1990; Stone, Nadim &
Strogatz 1991, Fountain et al. 2000). However, in the presence of symmetries (Mezić &
Wiggins 1994; Grigoriev 2005) it may be necessary to have two or three independent
velocity fields with complex time-dependence to cause efficient mixing. For simplicity,
all the discussion and examples in this paper are for two-dimensional toroidal domains,
i.e. square domains with periodic boundary conditions in both coordinates.

2. Description of the problem
2.1. Evolution equations

Consider the incompressible Navier–Stokes equation with external body forcing, with
the appropriate scalings for a Stokes flow regime on a two-dimensional toroidal
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domain T 2 = [0, 1]2:

(Re St)ut + (Re)u · ∇u = −∇p + F + ∇2u, ∇ · u = 0, (2.1)

where Re = ρUL/µ is the Reynolds number, St = L/UT the Strouhal number, U a
characteristic velocity, L a length scale, and T a time scale. All vectors are written in
bold font (eg: x) and their respective elements are written in usual font with indices
as subscripts (e.g. x1, x2, . .). Subscript t (e.g. ct ) indicates partial differentiation with
time. ∇ is the gradient. The density of the fluid is ρ and its viscosity µ. For Re → 0
and St → 0, the equation reduces to the Stokes equation

∇2u = ∇p − F, ∇ · u = 0. (2.2)

We assume the force field to be of the form F(x, t) =
∑n

i=1 αi(t)Fi(x). If ui is the
velocity field induced by the force field Fi (i.e. ui is the solution to equation (2.2) for
F = Fi), then the velocity field can be written as

u(x, t) =

n∑
i=1

αi(t)ui(x). (2.3)

If it were possible to create arbitrary force fields, we could assume the velocity field to
be of the form (2.3), but with possibly infinite modes chosen from a convenient basis,
and proceed to consider scalar field control as in what follows, and then return to the
Stokes equation or Navier–Stokes equation to find the appropriate force F(x, t) to
generate u(x, t). But, this is not likely to be realizable in practice. Here, we study the
special case where it is possible to generate a finite set of force fields (Fi) using some
mechanisms, and assume that they can be modulated in time arbitrarily. Then we
find the corresponding ui and find the modulation in time that is optimal for mixing.
Now, consider a density field c(x, t) that is being advected by the velocity field (2.3).
Then

ct (x, t) = −u(x, t) · ∇c(x, t) = −
n∑

i=1

αi(t)ui(x) · ∇c(x, t), c(x, 0) = c0(x). (2.4)

The control system (2.4) is a bilinear system where c(., t) is the infinite-dimensional
state and α(t) is the finite-dimensional control input. Issues of stability and
controllability have been studied for both finite-dimensional bilinear systems (see
e.g. Jurdjevic & Quinn 1978; Slemrod 1978) and infinite-dimensional bilinear systems
(see e.g. Ball, Marsden & Slemrod 1982).

Note that since each ui is volume-preserving and there is no diffusion, the mean
and variance of the density field is preserved under the evolution by equation (2.4).
In fluid-mechanical terms, this corresponds to the limit as the Péclet number (Pe)
goes to infinity. Recall that the Péclet number is the ratio of advective transport to
diffusive transport. In any realistic system, there would be some non-zero diffusion.
But in a typical mixing process there is an initial stage during which the diffusive
effects are negligible and the variance remains almost constant. It is during this initial
stage, which is commonly referred to as ‘stirring’, that stretching and folding of fluid
elements occur and eventually facilitate diffusion to efficiently homogenize the passive
material. Therefore, to optimize this initial stage of stirring, we need to consider the
pure advection problem and use a measure for mixing different from the variance.
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2.2. The cost function and the optimal control problem

2.2.1. Measure of mixedness

In our previous work (Mathew et al. 2005), a multiscale measure for mixing, referred
to as the mix-norm, was presented to quantify the degree of mixedness of a density
field. This measure is based on the concept of weak convergence and is related to the
classical ergodic-theoretic notion of mixing. The definition of the measure is based on
averaging the function over all scales and integrating the L2 norms of the averaged
functions over all scales. On an m-dimensional toroidal domain, the mix-norm Φ(c)
is defined as follows:

For s ∈ (0, 1), φ2(c, s) =

∫
T m

d2(c, p, s) d p, where d(c, p, s) =

∫
B( p,s)

c(x) dx

V (s)
. (2.5)

V (s) is the volume of the spherical set B( p, s) = { y : ‖ y − p‖ � 1
2
s}, d(c, p, s) is the

average value of the function c within the spherical set B( p, s) and φ(c, s) is the L2

norm of the averaged function d(c, . , s) at a fixed scale s. Then Φ(c) is defined as

Φ2(c) =

∫ 1

0

φ2(c, s) ds. (2.6)

Φ2(c) can also be written as the inner product 〈c, [M]c〉, where 〈., .〉 is the standard
inner product and [M] is a self-adjoint, positive semi-definite and spatially invariant
operator. Thus its eigenfunctions are the Fourier basis functions (i.e. ei2π(k · x)). The
eigenvalue Λk corresponding to a Fourier mode with wavenumber vector k satisfies
the inequality

µ1

(1 + (2π‖k‖)2)1/2
� Λk �

µ2

(1 + (2π‖k‖)2)1/2
, (2.7)

where µ1, µ2 > 0 are constants. For a density field with a Fourier expansion c(x) =∑
k ck ei2π(k · x), the mix-norm can be computed as Φ2(c) =

∑
k Λk|ck|2. It follows from

inequality (2.7) that the mix-norm is equivalent to a Sobolev space norm of negative
index s = − 1

2
, which is defined for every c ∈ L2

T m as

‖c‖H −1/2 =

(∑
k

1

(1 + (2π‖k‖)2)1/2
|ck|2

)1/2

, (2.8)

i.e. for all c ∈ L2
T m ,

√
µ1‖c‖H −1/2 � Φ(c) �

√
µ2‖c‖H −1/2 . (2.9)

The mathematical equivalence of the mix-norm and the ‖·‖H −1/2 norm makes them
interchangeable. If one of the norms decays to zero for a sequence of functions,
it implies the decay of the other. Moreover, the asymptotic rate of decay of both
norms would be exactly the same. In particular, if the ‖·‖H −1/2 norm can be shown
to decay exponentially to zero for a given sequence of functions, it implies that the
magnitudes of average function values over almost every spherical set converge to
zero at an exponential rate. In all further references and computations of the mix-
norm, we use the ‖·‖H −1/2 norm. In other words, the linear operator [M] is assumed
to have eigenvalues Λk = (1 + (2π‖k‖)2)−1/2. Note that when computing Φ2(c), the
eigenvalues Λk act as a weighting on the energy contained in various Fourier modes.
The larger the magnitude of the wavenumber vector, the smaller the weighting. In
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all our computations, we use FFT software (Frigo & Johnson 1998) to compute the
mix-norm.

The mix-variance of a density field c is defined as Φ2(c − c̄), where c̄ is the mean
of the field c over the whole space. It can be proven that the underlying flow field
is mixing in the classical ergodic-theoretic sense if and only if the mix-variance of
any advected density field decays to zero or equivalently the evolving density field
converges weakly to a field of constant value c̄ (see Mathew et al. 2005). Decay of
the mix-variance of an evolving density field implies that energy is transferred from
low-wavenumber Fourier modes to high-wavenumber Fourier modes. In what follows,
we will always assume that c has zero mean and therefore the mix-variance would
be the same as the square of the mix-norm. For the case of a density field c with
non-zero mean, one can define the new field d = c − c̄ and study the evolution of d .

A measure for mixing that is similar in spirit to the mix-variance is discussed by
Stone & Stone (2005), where the mixing measure used is a scale-independent quantity
and is based on how rapidly diffusion alone would homogenize a density field. In
fact, a generalization of the measure introduced by Stone & Stone (2005) may be
obtained so that it captures the mixing properties that the mix-variance does. The
exact relationship between these two quantities needs to be investigated further.

2.2.2. The optimal control problem

In optimal control problems, it is common to have various competing performance
objectives. Here, we use two such objectives. One is the degree of mixedness of the
density field at the final time, which is quantified in terms of the mix-variance, and
the second is the action, which is the time integral of the kinetic energy per unit mass
of the fluid body. (Throughout the rest of the paper, the term ‘action’ actually refers
to the action per unit mass.) Computing the kinetic energy per unit mass at time t ,
we have

1

2

∫
T 2

ρu(x, t) · u(x, t) dx∫
T 2

ρ dx
=

1

2

∫
T 2

(
n∑

i=1

αi(t)ui(x)

)
·
(

n∑
i=1

αi(t)ui(x)

)
dx

=

n∑
i=1

n∑
j=1

αi(t)

(
1

2

∫
T 2

ui(x) · uj (x) dx
)

αj (t)

= α(t) · Rα(t), (2.10)

where

Ri,j :=
1

2

∫
T 2

ui(x) · uj (x) dx.

Then the action caused by a control α is given as

A(α) :=

∫ tf

0

α(t) · Rα(t) dt. (2.11)

In the rest of the paper, we will assume that the set of velocity fields {ui} are linearly
independent. This guarantees that the matrix R will be symmetric positive definite.
Given below are three possible optimal control problems.
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Optimal Control Problem I: Fixed action caused by the controls:

Min
α∈L2

[0,tf ]

{W (α) := 〈c(., tf ), [M]c(., tf )〉}
(2.12)

subject to (2.4) and such that A(α) = A∗.

Optimal Control Problem II: Fixed degree of mixedness at the final time:

Min
α∈L2

[0,tf ]

{
A(α) :=

∫ tf

0

α(t) · Rα(t) dt

}
(2.13)

subject to (2.4) and such that 〈c(., tf ), [M]c(., tf )〉 = (Φ∗)2.

Optimal Control Problem III: Weighted combination of mixedness and action as the
cost-function:

Min
α∈L2

[0,tf ]

{
C(α) := 〈c(., tf ), [M]c(., tf )〉 + w ·

∫ tf

0

α(t) · Rα(t) dt

}
(2.14)

subject to (2.4).

In these problems tf is a finite time-span and w > 0 is a weighting parameter that
determines how much the action caused by the control should be penalized relative
to the mixedness. In general, the matrix R may be set arbitrarily, but here we choose
R as discussed above because of the nice physical interpretation of the resulting cost-
function. Solutions to the optimal control problem (2.14) are Pareto optimal solutions
in the following sense. Let α∗ be the α that minimizes C(α) for some w. Let α∗ lead
to a certain degree of mixedness (Φ∗)2 and to a certain value for the action A∗. Then
α∗ is a solution to both optimal control problems I and II.

The argument that α∗ also solves optimal control problem II is as follows. The proof
is by contradiction. Let ᾱ be a solution to optimal control problem II. Therefore,
ᾱ achieves a degree of mixedness (Φ∗)2. Now, assume that A(ᾱ) <A∗. Then C(ᾱ) <

C(α∗) = (Φ∗)2 + wA∗, and therefore ᾱ would be a better solution to optimal control
problem III than α∗, thus contradicting the assumption that α∗ minimizes C(α).
Now, assume ᾱ is such that A(ᾱ) >A∗. But, then A(α∗) <A(ᾱ), thus contradicting
the assumption that ᾱ is a solution to optimal control problem II. Therefore, it is
necessary that A(α∗) = A(ᾱ). A similar argument shows that α∗ also solves optimal
control problem I.

The existence of solutions to optimal control problem II depends on the issue of
controllability i.e. it must be possible to achieve the desired degree of mixedness with
the available velocity fields, whereas the existence of solutions to optimal control
problems I and III are irrespective of this issue of controllability. The relevance
of each of these optimal control problems may depend on the specific engineering
situation. If one is interested only in finding Pareto optimal solutions, one could do
so by generating solutions to optimal control problem III for various values of w.
In this paper, for convenience, we focus on optimal control problem I, i.e. we aim to
achieve optimal mixing for a fixed value of the action.

3. Solving the optimal control problem
Solving the optimal control problems discussed in the previous section is both

analytically and numerically challenging. There are only limited results available for
optimal control of infinite-dimensional bilinear systems (see e.g. Banks 1987). Here,
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we use a gradient-based method to find numerical approximations of solutions to
the optimal control problem. The partial differential equation (2.4) is treated as a

constraint and using the Lagrange multiplier formalism, an augmented functional Ŵ

is defined as

Ŵ (α, c, λ, z) := 〈c(., tf ), [M]c(., tf )〉 − z.

(
A∗ −

∫ tf

0

α(t) · Rα(t) dt

)
−

∫ tf

0

∫
T 2

λ(x, t)

(
ct (x, t) +

n∑
i=1

αi(t)ui(x) · ∇c(x, t)

)
dx dt. (3.1)

The variables z and λ(x, t) play the role of Lagrange multipliers. Finding the Fréchet

derivatives of Ŵ with respect to α, c, λ and z and setting them to zero gives the
first-order necessary conditions for optimality in terms of the two-point boundary
value problem (TPBVP):[

DŴ

Dλ

]
∂λ = 0; =⇒ c∗

t (x, t) +

n∑
i=1

α∗
i (t)ui(x) · ∇c∗(x, t) = 0, c∗(x, 0) = c0(x), (3.2a)

[
DŴ

Dc

]
∂c = 0; =⇒ λ∗

t (x, t) +

n∑
i=1

α∗
i (t)ui(x) · ∇λ∗(x, t) = 0, λ∗(x, tf ) = 2[M]c∗(x, tf ),

(3.2b)[
DŴ

Dz

]
∂z = 0; =⇒

∫ tf

0

α(t) · Rα(t) dt = A∗, (3.2c)[
DŴ

Dα

]
∂α = 0; =⇒ 2zRα∗(t) + β∗(t) = 0, (3.2d)

where

β∗
i (t) = −〈λ∗(., t), ui(·) · ∇c∗(., t)〉 for i = 1, 2, . . , n. (3.2e)

For the basic concepts underlying the derivation of these necessary conditions, see
Gelfand & Fomin (1963) and Kirk (1970). For completeness, we give the derivation
of the TPBVP (3.2) in the Appendix. The variable λ(x, t) would be referred to as the
costate field. α∗ is the optimal control and c∗ and λ∗ are the solutions of the state
and costate fields (c and λ) corresponding to the optimal control.

3.1. Conservation of kinetic energy by the optimal controls

An important feature of the optimal controls is that the resulting system evolves in a
manner such that the kinetic energy of the fluid body is conserved, i.e. the solutions
α∗ to the TPBVP are such that

α∗(t) · Rα∗(t) = constant. (3.3)

This statement can be verified as follows. From equation (3.2) we have

α∗(t) =
−1

2z
R−1β∗(t). (3.4)

Computing the time-derivative of α∗(t) · Rα∗(t), we get

d

dt
(α∗(t) · Rα∗(t)) = 2α∗(t) · R d

dt
(α∗(t)) = 2α∗(t) · R

(
−1

2z
R−1 d

dt
(β∗(t))

)
=

−1

z
α∗(t) · d

dt
(β∗(t)) =

−1

z

n∑
i=1

α∗
i (t)

dβ∗
i (t)

dt
. (3.5)
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Now,

dβ∗
i (t)

dt
= −〈λ∗

t (., t), ui(.) · ∇c∗(., t)〉 + 〈ui(·) · ∇λ∗(., t), c∗
t (., t)〉

= 〈u(., t) · ∇λ∗(., t), ui(·) · ∇c∗(., t)〉 − 〈ui(·) · ∇λ∗(., t), u(., t) · ∇c∗(., t)〉. (3.6)

Therefore,

d

dt

(
α∗(t) · Rα∗(t)

)
=

−1

z

n∑
i=1

α∗
i (t)(〈u(., t) · ∇λ∗(., t), ui(·) · ∇c∗(., t)〉 − 〈ui(·) · ∇λ∗(., t), u(., t) · ∇c∗(., t)〉)

=
−1

z

〈
u(., t) · ∇λ∗(., t),

n∑
i=1

α∗
i (t)ui(·) · ∇c∗(., t)

〉

+
1

z

〈
n∑

i=1

α∗
i (t)ui(·) · ∇λ∗(., t), u(., t) · ∇c∗(., t)

〉

=
−1

z
〈u(., t) · ∇λ∗(., t), u(., t) · ∇c∗(., t)〉 +

1

z
〈u(., t) · ∇λ∗(., t), u(., t) · ∇c∗(., t)〉 = 0.

(3.7)

Conservation of kinetic energy implies that the vector α∗(t) evolves on the ellipsoid
described by equation (3.3). For the special case when there are just two basis velocity
fields (two controls) and when R is a diagonal matrix, the following properties hold
for all the optimal controls:

(i) if the magnitude of one of the control inputs is increasing, the magnitude of the
other control input must be decreasing;

(ii) when the time-derivative of one of the control inputs is zero, the other control
input must either have zero time-derivative or actual value zero, i.e. as long as both
control inputs are away from zero, maximum or minimum peaks of one of the
control inputs must appear simultaneously with the maximum or minimum peaks of
the other.
In the next section, we describe how we find numerical approximations of the solutions
to the two-point boundary value problem using a conjugate gradient descent method
(Luenberger 1984).

3.2. Description of the conjugate gradient descent method

For a given α, solutions of the density field c and costate field λ are explicitly known in
terms of Lagrangian tracer particle trajectories. For this purpose we need to introduce
the mapping Sα that is defined as follows. For tf � t0, Sα is such that if

dx(t)

dt
=

n∑
i=1

αi(t)ui(x(t)), x(t0) = x0, (3.8)

then x(tf ) = Sα(x0, t0, tf ). Also, for tf < t0, Sα is such that Sα(., t0, tf ) = S−1
α (., tf , t0).

Therefore, for a given α, the state and costate fields can be computed as

c(x, t) = c0(Sα(x, t, 0)), λ(x, t) = λ(Sα(x, t, tf ), tf ) = 2[M]c(Sα(x, t, tf ), tf ). (3.9)
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Note that, at a given α, the Fréchet derivative of the cost-function W = 〈c(., tf ),
[M]c(., tf )〉 with respect to α is given as[

DW

Dα

]
∂α =

∫ tf

0

β(t) · ∂α(t) dt, (3.10)

where

βi(t) := −〈λ(., t), ui(·) · ∇c(., t)〉.

In equations (3.9) and (3.10), the implicit dependence of the variables β , c and λ on
α is suppressed in the notation. It is assumed that c and λ are the solutions of the
respective partial differential equations corresponding to the α under consideration.
As described in the previous section, the optimal controls are such that the kinetic
energy of the fluid body is conserved or the vector α∗(t) evolves on the ellipsoid
described by α∗(t) · Rα∗(t) = constant. Therefore, it is desirable to search for solutions
that satisfy this property. For this purpose, we describe how we find approximations
to the optimal controls for the case when there are two basis velocity fields and such
that the kinetic energy is conserved. We assume the optimal controls to be of the
form

α(t) = R−1/2b(t), (3.11)

where

b1(t) = a cos(θ(t)), b2(t) = a sin(θ(t)). (3.12)

This ensures that α(t) · Rα(t) = a2 is a constant. (Note that b2(t) = −a sin(θ(t)) is also
a possibility.) Also, since the action is fixed at A∗, we have a =

√
A∗/tf . Thus, we

only need to optimize for the angle function θ to minimize the cost-function W . The
Fréchet derivative of the cost-function W with respect to θ is given as[

DW

D θ

]
∂θ =

[
DW

Dα

]
◦

[
Dα

Dθ

]
∂θ =

∫ tf

0

∂Wθ (t)∂θ(t) dt, (3.13)

where

∂Wθ (t) := β(t) · R−1/2 ∂(b(t))

∂θ
.

Now, an initial guess (θ)0 is made for θ . The corresponding solutions for the state
and costate fields, (c)0 and (λ)0, are computed using equation (3.9). Once (c)0 and (λ)0

are computed, the following iteration is performed:

(θ)n+1(t) = (θ)n(t) + (h)n(s)n(t),

(s)n+1(t) = −(∂Wθ )
n+1(t) + (γ )n(s)n(t),

}
(3.14)

where (∂Wθ )
n+1 is ∂Wθ computed for θ =(θ)n+1; (h)n is a scalar chosen so that it

minimizes W ((θ)n + h(s)n), i.e.

W ((θ)n + (h)n(s)n) = Min
h>0

W ((θ)n + h(s)n). (3.15)

The initial search direction (s)0 is set to (∂Wθ )
0; (γ )n is a scalar computed using the

so-called Polak–Ribiere formula

(γ )n = max

{
〈(∂Wθ )

n+1, (∂Wθ )
n+1 − (∂Wθ )

n〉
〈(∂Wθ )n, (∂Wθ )n〉 , 0

}
. (3.16)
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Figure 1. Velocity fields defined in (4.1): (a) u1, (b) u2.

When (γ )n is identically set to zero, the method reduces to the steepest descent
method. We note that the solutions to which the conjugate gradient descent method
converge are not guaranteed to be global minima. They could be local minima of the
functional W . But still, these local minima provide upper bounds on the minimum
value of the mix-variance attainable for a fixed value of the action.

4. Examples and numerical results
The examples in this paper are motivated by the experiments performed by

Rothstein, Henry & Gollub (1999), where an ordered array of magnets with alternating
polarity is used to create an array of vortices with alternating rotations, by means
of Lorentz forces in a two-dimensional fluid layer that carries an electric current. In
the examples here, we consider two separate arrays with different alignments that
can be independently controlled. The kinematics corresponding to this set-up can be
captured by the velocity fields (see figure 1)

u1(x) =

[
−sin(2πx1) cos(2πx2)
−cos(2πx1) sin(2πx2)

]
,

u2(x) =

[
−sin(2π(x1 − 0.25)) cos (2π(x2 − 0.25))
cos (2π(x1 − 0.25)) sin (2π(x2 − 0.25))

]
.

⎫⎪⎪⎬⎪⎪⎭ (4.1)

For these velocity fields, the corresponding matrix R as defined in (2.10) can be
computed to be R = diag{0.25, 0.25}. The initial density field is chosen to be

c0(x) = sin(2πx2). (4.2)

We set tf = 1, A∗ = 1.25 and make an initial guess of (θ)0(t) = π/3 for the angle
function θ . The conjugate gradient descent algorithm described above is performed
for 20 iterations. All the computations are done with a uniform grid of 250 × 250
in the spatial domain and by discretizing the time domain with 250 time steps. A
second-order Runge–Kutta method is used for all the Lagrangian particle simulations.
Figure 2(a) shows the gradient information corresponding to the initial guess and
figure 2(b) shows the converged solution. Note that the computed optimal solution has
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Figure 2. (a) Gradient information corresponding to an initial guess of (θ )0(t) = π/3. The
solid and dash-dot curves are respectively the functions β1 and β2 corresponding to the initial
guess. (b) The optimal solution obtained after 20 iterations of the conjugate gradient descent
algorithm. Note that the computed optimal solution has oscillatory components in spite of the
initial guess having no oscillations (results for velocity fields defined in (4.1)).
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Figure 3. (a) The decay of the mix-variance with time and (b) the corresponding linear-log
plot. The decay rate of the mix-variance is not uniform, while the linear–log plot indicates that
on average, the mix-variance decays at an exponential rate (results for velocity fields defined
in (4.1)).

clear oscillatory components in spite of the initial guess having no oscillations. Figure 3
shows the decay of the mix-variance with time, corresponding to the computed
optimal solution. Figure 4 shows snapshots at various times of the evolving density
field advected by the optimal control.

In figure 3, it can be observed that the time-derivative of the mix-variance comes
close to zero within small time intervals even with the optimally mixing controls. It is
possible that no choice of α(t) would make the time-derivative strictly less than zero.
For instance, if c(x, t) = cs(x) is an eigenfunction of [M] with eigenvalue s, then

dΦ2(c(., t))

dt
= −2〈u(., t) · ∇cs(·), [M]cs(.)〉 = −2s〈u(., t) · ∇cs(·), cs(·)〉

= −s

∫
T 2

div
(
uc2

s

)
dx = 0. (4.3)



272 G. Mathew, I. Mezić, S. Grivopoulos, U. Vaidya and L. Petzold

t = 0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1.0

Figure 4. Snapshots at various times of the density field advected by the optimal control
(results for velocity fields defined in (4.1)).

In fact, for different initial guesses, it is observed that the computed optimal solutions
cause a non-monotonic decay of the mix-variance. This stresses the drawback of using
a Lyapunov-based feedback method to achieve mixing. A Lyapunov-based feedback
method would try to choose values for the controls αi(t) so as to make the time-
derivative of the mix-variance less than zero. But, as shown in the calculation in (4.3),
this may be impossible.

As a second example, we use the velocity fields

u1(x) =

[
−sin(4πx1) cos (2πx2)
2cos(4πx1) sin (2πx2)

]
,

u2(x) =

[
−sin(4π(x1 − 0.125)) cos (2π(x2 − 0.25))
2cos(2π(x1 − 0.125)) sin (2π(x2 − 0.25))

]
.

⎫⎪⎪⎬⎪⎪⎭ (4.4)

For these velocity fields, the corresponding matrix R can be computed to be R =
diag{0.625, 0.625}. We use the same set of parameters and initial guess as in the
previous example, but set A∗ = 1.0. Figures 5–8 show the relevant information for this
example. Here also, it can be observed that the time-derivative of the mix-variance
comes close to zero within small time intervals. Also, oscillatory components appear
very clearly in the optimal solutions.

Figure 9 shows how the mixing performance of the optimal controls varies with
respect to the action A∗. The computations to generate these plots are done as
follows. We start with a low value for the action A∗. We find the optimal solution
using the iterative process described above. For a slightly higher value of the action,
we use the optimal solution from the previous computation as the initial guess for
the iterative process. We repeat this process up to the highest value of action desired.
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Figure 5. Velocity fields defined in (4.4): (a) u1, (b) u2.
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guess. (b) The optimal solution obtained after 20 iterations of the conjugate gradient descent
algorithm (results for velocity fields defined in (4.4)).
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Figure 7. (a) The decay of the mix-variance with time and (b) the corresponding linear-log
plot (results for velocity fields defined in (4.4)).
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Figure 8. Snapshots at various times of the density field advected by the optimal control
(results for velocity fields defined in (4.4)).
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Figure 9. The log-log plots for (a) velocity fields (4.1) and (b) velocity fields (4.4) showing
the minimum value of the mix-variance attainable ((Φ∗)2) as a function of the action A∗.

This makes it likely that for each value of the action, the iterative process starts near
to a local minimum and therefore the iteration converges faster. This also makes it
more likely that the local minima obtained for two nearby values of the action are
not significantly different. From the log–log plots in figure 9, it can be seen that the
minimum value of the mix-variance attainable varies almost linearly with respect to
the action A∗.
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Figure 10. Mix-variance at the final time, Φ2(c(., tf )), as a function of the frequency, f , of

sinusoidal inputs with mean and L2 norm comparable to that of the optimal controls α∗
i ,

corresponding to (a) figure 2 (velocity fields (4.1)) and (b) figure 6 (velocity fields (4.4)). The
horizontal dashed line indicates the level of mixedness achieved by the optimal controls α∗

i .

4.1. Comparison with sinusoidal inputs

To compare the mixing effectiveness of the optimal controls α∗ with that of sinusoidal
inputs, we consider inputs of the form

α
p
i (t) = mi + ri sin(2πf t + ψi). (4.5)

So that α
p
i and α∗

i have approximately the same mean and L2 norm, mi and ri are
chosen as

mi =

∫ tf

0

α∗
i (t) dt

tf
, ri =

√√√√√√√
∫ tf

0

(α∗
i (t) − mi)

2 dt∫ tf

0

sin2(2πt) dt

. (4.6)

Figure 10 compares the mixing performance of sinusoidal inputs with that of the
optimal controls computed in the two examples above. The mix-variance at the
final time (Φ2(c(., tf ))) is plotted as a function of the frequency f for two different
cases: (ψ1 = 0, ψ2 = π) and (ψ1 = π, ψ2 = 0). For both examples, it can be seen that
the mixing performance of the optimal aperiodic controls is better than that of
sinusoidal inputs of all frequencies. The value of the mix-variance achieved by the
optimal aperiodic controls is roughly half of that achieved by the sinusoidal input
with optimal frequency. This means that the dominant wavenumbers differ roughly
by a factor of two.

Figure 11 shows the density fields at the final time when the inputs are sinusoidal
with optimal frequencies. A visual inspection of the density fields may not suggest a
significant difference in the mixedness achieved by sinusoidal and optimal inputs, but
there is a significant quantitative difference as confirmed by the plots in figure 10. We
also expect the difference to become more pronounced for higher values of the action.
However, at this time, we are unable to demonstrate this numerically. This intuition
is confirmed by the results by Pierrehumbert (1994), Rothstein et al. (1999) and Liu
& Haller (2004). In these works, numerical, experimental and theoretical explorations
are made and it is shown that persistent spatial patterns emerge in passive scalar fields
when advected by time-periodic flows. These persistent spatial patterns are clearly
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(a) (b)

Figure 11. Advected density field at the final time tf = 1, when the inputs are sinusoidal,
with (a) the same energy as optimal aperiodic controls in figure 2 and with optimal frequency
fopt = 2.25, and (b) the same energy as optimal aperiodic controls in figure 6 and with optimal
frequency fopt = 2.6.

not conducive for mixing. However, it must be noted that various flow parameters
(frequencies and amplitudes in this case) can be optimized so that time-periodic flows
can achieve reasonable mixing, thus possibly making the distinction between periodic
inputs and optimal aperiodic controls not very significant for small values of the
action.

5. Discussion
Note that the computed optimal solutions for the examples presented in this paper

are guaranteed only to be local minima. The solution to which the conjugate gradient
descent algorithm converges clearly depends on the initial guess one makes. It may be
possible to make finer adjustments to the computed optimal controls to attain better
approximations to the optimal solutions. But, given the spatial resolutions with which
it is possible to do the computations in a reasonable time, it is not possible to probe
the finer scales and make these finer improvements. For our examples, it is observed
that there is no substantial change in the cost-function after around 20 iterations of
the conjugate gradient descent algorithm.

At present, very little is known about the general structure of the optimally mixing
protocols. The infinite-dimensionality of the state makes it difficult to make general
comments about the behaviour of the optimal solutions. This is typically the case for
high-dimensional optimal control problems. However, we can make one important
observation. As discussed in § 3.1, the optimal solutions are such that the vector α∗(t)
evolves on the circle for the case when the matrix R is diagonal. Kinematically, this
translates into each basis velocity field taking turns in moving material across the
streamlines of the other. Still, the exact sequence and timing of switching between
the different basis velocity fields has to be numerically computed using methods as
described in our paper.

Numerous variants of the optimal control problem posed here can be considered.
One version is where the action is not taken into consideration, but the inputs are
constrained by inequalities of the form

0 � |αi(t)| � αmax
i , (5.1)

and the objective is to achieve a desired degree of mixedness (say Φ2(c(., tf )) = Φ2
des)

within minimum time (tf ). Using Pontryagin’s maximum principle, it can be predicted
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that the optimal controls will be of the bang-bang type (see Kirk 1970), i.e. the optimal
controls α∗

i would assume only the three values {−αmax
i , 0, αmax

i }. The equations
describing the evolution of the costate field would be the same as in the TPBVP
discussed in this paper, but with a slightly different boundary condition, and the
optimal controls would be such that

α∗
i (t) = sign(〈λ∗(., t), ui(.) · ∇c∗(., t)〉

)
αmax

i . (5.2)

However, the existence of solutions to this problem depends on the issue of
controllability. It must be possible to achieve the desired degree of mixedness with
the available basis velocity fields. An interesting aspect of this problem is the nature
of the switching of the optimal controls between the extreme values. We expect the
switching to occur faster and faster with time as the density field becomes more and
more mixed. All of these issues will be the subject of future work.

This work was supported by NSF/IGERT DGE-0221715, AFOSR Grant No.
F49620-03-1-0096 and NSF DMS-0507256:

Appendix A. Derivation of necessary conditions for optimality and the
two-point boundary value problem
The goal is to find the extrema of the functional W (α) = 〈c(., tf ), [M]c(., tf )〉, where
c(x, t) is the solution to

ct (x, t) +
∑

i

αi(t)ui(x) · ∇c(x, t) = 0, c(x, 0) = c0(x), (A 1)

and such that ∫ tf

0

α(t) · Rα(t) dt = A∗. (A 2)

The partial differential equation (A 1) is treated as a constraint together with
the constraint (A 2) and, using the Lagrange multiplier formalism, an augmented

functional Ŵ is defined as

Ŵ (α, c, λ, z) = 〈c(., tf ), [M]c(., tf )〉 − z.

(
A∗ −

∫ tf

0

α(t) · Rα(t) dt

)

−
∫ tf

0

∫
T 2

λ(x, t)

(
ct (x, t) +

∑
i

αi(t)ui(x) · ∇c(x, t)

)
dx dt

:= Wa(α, c, λ, z) + Wb(α, c, λ, z) + Wc(α, c, λ, z), (A 3)

where

Wa(α, c, λ, z) := 〈c(., tf ), [M]c(., tf )〉 ,

Wb(α, c, λ, z) := −z.

(
A∗ −

∫ tf

0

α(t) · Rα(t) dt

)
,

Wc(α, c, λ, z) := −
∫ tf

0

∫
T 2

λ(x, t)
(
ct (x, t) +

∑
i

αi(t)ui(x) · ∇c(x, t)
)

dx dt.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A 4)

The first variations of the individual functionals Wa , Wb and Wc are given as follows:

∂Wa(∂α, ∂c, ∂λ, z) = 2 〈[M]c(., tf ), ∂c(., tf )〉 . (A 5)
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i.e.

Wa(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z) = Wa(α, c, λ, z) + ∂Wa(∂α, ∂c, ∂λ, ∂z)

+ higher order terms. (A 6)

And,

∂Wb(∂α, ∂c, ∂λ, ∂z) = 2z.

∫ tf

0

α(t) · R∂α(t) dt −
(

A∗ −
∫ tf

0

α(t) · Rα(t) dt

)
∂z. (A 7)

Now computing Wc(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z), we obtain

−Wc(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z)

=

∫ tf

0

∫
T 2

(λ + ∂λ)

(
(ct + ∂ct ) +

∑
i

(αi + ∂αi)ui · ∇(c + ∂c)

)
dx dt

=

∫ tf

0

∫
T 2

λ

(
(ct + ∂ct ) +

∑
i

(αi + ∂αi)ui · ∇(c + ∂c)

)
dx dt

+

∫ tf

0

∫
T 2

∂λ

(
(ct + ∂ct ) +

∑
i

(αi + ∂αi)ui · ∇(c + ∂c)

)
dx dt

=

∫ tf

0

∫
T 2

λ

(
ct + ∂ct +

∑
i

αiui · ∇c

+
∑

i

αiui · ∇∂c +
∑

i

∂αiui · ∇c

)
dx dt + higher order terms

+

∫ tf

0

∫
T 2

∂λ

(
ct +

∑
i

αiui · ∇c

)
dx dt + higher order terms. (A 8)

Therefore,

Wc(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z) − Wc(α, c, λ, z)

= −
∫ tf

0

∫
T 2

(
λ∂ct + λ

∑
i

αiui · ∇∂c + λ
∑

i

∂αiui · ∇c

)
dx dt

−
∫ tf

0

∫
T 2

∂λ

(
ct +

∑
i

αiui · ∇c

)
dx dt + higher order terms

:= ∂Wc(∂α, ∂c, ∂λ, ∂z) + higher order terms, (A 9)

where

∂Wc(∂α, ∂c, ∂λ, ∂z) := −
∫ tf

0

∫
T 2

(
λ∂ct + λ

∑
i

αiui · ∇∂c + λ
∑

i

∂αiui · ∇c

)
dx dt

−
∫ tf

0

∫
T 2

∂λ

(
ct +

∑
i

αiui · ∇c

)
dx dt. (A 10)
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Now, applying integration by parts to the first two terms on the right-hand side of
(A 10), we obtain∫ tf

0

∫
T 2

λ(x, t)∂ct (x, t) dx dt =

∫
T 2

λ(x, tf )∂c(x, tf ) dx −
∫ tf

0

∫
T 2

λt (x, t)∂c(x, t) dx dt,

(A 11)
and ∫ tf

0

∫
T 2

λ
∑

i

αiui · ∇∂cdx dt =

∫ tf

0

∫
T 2

(∑
i

λαiui

)
· ∇∂c dx dt

=

∫ tf

0

∫
Γ

(∑
i

λαiui

)
· η∂c dΓ dt −

∫ tf

0

∫
T 2

∇ ·
(∑

i

λαiui

)
∂c dx dt

=

∫ tf

0

∫
Γ

(∑
i

λαiui

)
· η∂c dΓ dt −

∫ tf

0

∫
T 2

λ∇ ·
(∑

i

αiui

)
∂c dx dt

−
∫ tf

0

∫
T 2

(∑
i

αiui

)
· ∇λ ∂c dx dt. (A 12)

In the expressions above, Γ is the surface bounding the domain and η is the normal
to the surface bounding the domain. Since the domain in these discussions is a torus,
the first term on the right-hand side of (A 12) is zero. On general domains too, the
first term is zero if there is no wall-normal velocity. The second term on the right
hand-side of (A 12) is zero too because each ui is divergence free. Therefore, we have

∂Wc(∂α, ∂c, ∂λ, ∂z) = −
∫

T 2

λ(x, tf )∂c(x, tf ) dx +

∫ tf

0

∫
T 2

λt (x, t)∂c(x, t) dx dt

+

∫ tf

0

∫
T 2

(∑
i

αi(t)ui(x) · ∇λ(x, t)

)
∂c(x, t) dx dt

−
∫ tf

0

∫
T 2

λ(x, t)

(∑
i

(ui(x) · ∇c(x, t)) ∂αi(t)

)
dx dt

−
∫ tf

0

∫
T 2

(
ct (x, t) +

∑
i

αi(t)ui(x) · ∇c(x, t)

)
∂λ(x, t) dx dt.

(A 13)

The necessary conditions for an extremum require that the sum of all first variations
of the augmented functional be zero. Thus, requiring ∂Wa + ∂Wb + ∂Wc = 0, for all
∂α, ∂c, ∂λ and ∂z, gives the set of equations

ct (x, t) +
∑

i

αi(t)ui(x) · ∇c(x, t) = 0, c(x, 0) = c0(x),

λt (x, t) +
∑

i

αi(t)ui(x) · ∇λ(x, t) = 0, λ(x, tf ) = 2[M]c(x, tf ),∫ tf

0

α(t) · Rα(t) dt = A∗,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A 14)
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and

2z.

∫ tf

0

α(t) · R∂α(t) dt =

∫ tf

0

∫
T 2

λ(x, t)

(∑
i

(ui(x) · ∇c(x, t)) ∂αi(t)

)
dx dt

=

∫ tf

0

∑
i

(∫
T 2

λ(x, t) (ui(x) · ∇c(x, t)) ∂αi(t)

)
dx dt

=

∫ tf

0

∑
i

〈λ(., t), ui(.) · ∇c(., t)〉 ∂αi(t) dt

=

∫ tf

0

− β(t) · ∂α(t) dt, (A 15)

where

βi(t) := −〈λ(., t), ui(.) · ∇c(., t)〉 for i = 1, 2, . . . , n. (A 16)

Therefore

2z Rα(t) + β(t) = 0. (A 17)

Equations (A 14) and (A 17) constitute the two-point boundary value problem in (3.2).
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